Battery/Ultracapacitor Evaluation

for

X-38 Crew Return Vehicle (CRV)

by
Eric Darcy
NASA-Johnson Space Center
and
Bradley Strangways
Symmetry Resources, Inc.

1998 NASA Aerospace Battery Workshop

32351

This Page Left Blank Intentionally

Top Level CRV Requirements

- •Provide for the safe return of ISS crew of zero to 7 in case
 - -emergency return of ill or injured crew person
 - -ISS can not maintain critical systems, pressure, attitude, or is contaminated
 - -Shuttle is not available to return crew
- •Crew return without pressure suits
- •On-orbit lifetime of 3 years
- •700 nautical miles of cross range
- •Land lander
- •Separation time from ISS < 3 minutes
- •Planned return mission time is 3 hours maximum
- •Contigency return mission time is 9 hour maximum

•Mission design

-V-201 mission objectives

- •Demonstrate launch on STS
- •Demonstrate on-orbit activation and checkout
- •Demonstrate RMS deployment
- Access on-orbit handling qualities
- •Assess system performance
- •Demonstrate de-orbit burn
- •Demonstrate de-orbit module separation and entry attitude maneuvers
- •Assess entry and hypersonic flight performance
- •Assess atmospheric flight performance
- •Demonstrate parachute operations
- Assess landing accuracy
- •Demonstrate landing performance
- •Demonstrate system shutdown

5

CRV 270V Battery Requirements

- · Performance
 - 270 +60/-20Vduring discharge, 367V max during charge
 - Divide into eight batteries modules each capable of 2.09 Ah (1.70 Ah for EMAs)
 - 57A (or 27C), 80 ms peaks every 2 seconds for 15 minutes
 - 4.7A (or 2.3C) average current baseline during the 15 minutes on EMAs
 - 2.1A (or C-rate) average current baseline during the 10 minutes on chutes
 - 29A (or 14C), 5 second peak at the end of the 10 minutes for the flare
 - 36 five minute discharge cycles once a month
 - Outside cabin, vacuum exposed for 3 years (14 days for V201)
- Preliminary Oblique Trapezoid Volume in Nose of Vehicle
 - 38" tall flush with forward bulkhead
 - 17" tall forward face
 - 28" forward length (x-axis)
 - 19.6" wide (y-axis)
 - 247 L max

10/27/98

1998 NASA Aerospace Battery Workshop

- •Unique Program Approach for X-38
- •Design, Build, and Test in small increments for rapid feedback
 - -Pallet Drops (parachute weight tests)
 - -Dog House Drop (parachute drop test with a vehicle-like shape)
 - -V-131 (X-24 aero shape with fixed surfaces dropped from a B52)
 - -V-132 (same shape with EMA controlled surfaces)
 - -V-133 (20% bigger, again B52 dropped)
 - -V-201 (Shuttle launched, 5/00, unmanned return test)
 - -V-202 (Ariane launched, 3/02, unmanned return test)
- •No prime contractor (except for Deorbit Propulsion Stage) thru V-202
- •Later, a prime contractor will build operational CRVs for ISS

NASA-Johnson Space Center, Houston, T.	ouston, I A	mouse	Center,	Space	nnson	-70	121	N/
--	-------------	-------	---------	-------	-------	------------	-----	----

7

Early Battery Point Design and Test Results

- · All testing performed by Symmetry Resources, Inc., in Arab, AL
- In early 1997, first pursued Hawker Cyclon Tall D-cell as baseline cell
- Resulting Point Design with Hawker Tall D-cell
 - 1P 160S battery module
 - 67.5 kg/module
 - 540 kg/total battery
 - 340mm x 760mm x 112mm, (28.94 L/module)
 - 231.5 L/total battery
- Observations
 - Cell internal resistance = 7.9 mohms
 - Need lower impedance cell design and higher power density

10/27/98

Test Conditions and Results

- Discharge at 25 deg C
- Minimum EMA voltage = 9.2V/6 cells (= 246V for 160S)
- Mininum Winch voltage = 10.2V/6 cells (= 272V for 160S)
- Maximum voltage sag = 2.4V/6 cells (= 64V for 160S) during last EMA pulse

NASA-Johnson Space Center, Houston, TX

9

Ultracapacitor Bank

- Capacitor bank of 7 capacitor in series
- · Capacitor bank rated at 142 Farads using unit cell rated at
 - 1000 Farad, 2645 J
 - 390 g → 1.88 Wh/kg
 - 160mm x 75mm x 24mm 2.55 Wh/L
 - ESR = 1.85 mohm
 - above values based on 2.3V float voltage
 - specific power = 4210 W/kg, power density = 5701 W/L
 - above values based on surge voltage = 2.7V
- · Bank and cell are commercially available from Maxwell Technology
 - bank P/N PCM14014X
 - capacitor P/N PC2623

10/27/98

- 1 Battery string and 1 capacitor bank were charged independently
- Hawker battery string was charged to 14.7 with a 6 amp limit for 16 hours
- Capacitor bank charged to a voltage = OCV of battery string (13.02V)
- Cells in capacitor bank were monitored and equalized for proper balancing
- Immediately after, battery and cap bank were paralleled and discharge began
- Original power profile was run (57A peak)
- Battery and total currents were measured throughout run Results.
- Minimum EMA voltage = 11.3V (1.88 V/LA cell)
- Minimum Winch voltage = 11.1V (1.85 V/LA cell)

Results

- Capacitor current is 95% (54A) of total at first
- Capacitor current levels to 75% (43A) after 1 minute
- Battery is charging capacitor at 2A during EMA off peaks
- Capacitor bank absorbs most of Winch pulse at first
- Capacitor bank current fades about 10A at end of 5s Winch pulse

- 3 Battery strings and 1 capacitor bank were charged independently
- Hawker battery strings were charged to 14.7 with a 6 amp limit for 16 hours
- Capacitor bank charged to a voltage = OCV of battery string (13.02V)
- Cells in capacitor bank were monitored and equalized for proper balancing
- Immediately after, batteries and cap bank were paralleled and discharge began
- 3X original power profile was run (171A peak)
- Total battery and total hybrid currents were measured throughout run Results
- Minimum EMA voltage = 10.7V (1.78 V/LA cell)
- Minimum Winch voltage = 10.5V (1.75 V/LA cell)

Results

- Capacitor current is 70% (120A) of total at first
- Capacitor current levels to 58% (100A) after 1 minute
- Battery is charging capacitor at 5A during EMA off peaks
- Capacitor bank absorbs only 40% (35A) of Winch pulse at first
- Capacitor bank current fades about 2A at end of 5s Winch pulse

NASA-Johnson Space Center, Houston, TX

14

Summary

- · Results indicate
 - Battery/capacitor hybrid does load share as expected
 - At triple currents, one bank of capacitors in parallel with three batt strings
 - · increases load voltage by 16% during last EMA pulse
 - increases load voltage by only 3% during 5 second winch pulse
 - 4x currents would result in capacitor bank sharing < 50% of peaks
 - 7 cap in parallel with 6 batteries results in caps charged to 1.91V/cap
 - Need better voltage matching to more fully charge caps
- · Hybrid Point Design
 - starting at 2.7V/cap, 330V bank consists of 122 in series
 - 122S bank weighs 47.9 kg and consumes 35.2 L
 - 22% more volume than 1P-160S battery of Hawker Tall D-cells

10/27/98

- 3 Battery strings and 1 capacitor bank were charged independently
- 14S strings of Sanyo 4/3A NiMH cells charged to 0.35A for 16 hours
- Capacitor bank charged to a voltage = OCV of battery strings (19.2V)
- Cells in capacitor bank were monitored and equalized for proper balancing
- Immediately after, batteries and cap bank were paralleled and discharge began
- 3X original power profile was run (171A peak)
- Total battery and total hybrid currents were measured throughout run Results
- Minimum EMA voltage = 14.1V (1.01 V/NiMH cell)
- Minimum Winch voltage = 14.4V (1.03 V/NiMH cell)

Test set-up at Symmetry Resources, Inc., in Arab, AL

- Ultracapacitor bank is in background
- NiMH battery is in foreground

Results

- Capacitor current is 90% (154A) of total at first
- Capacitor current levels to 81% (138A) after 3 minutes
- Battery is charging capacitor at ~6.7A during EMA off peaks
- Capacitor bank absorbs only 84% (73A) of Winch pulse at first
- Capacitor bank current fades about 18A at end of 5s Winch pulse

Summary of NiMH/Capacitor Hybrid

- · Test results indicate
 - Capacitors charged to 2.75V/ea when paralleled with 14-cell NiMH
 - Load voltage during EMA pulses barely > 1V/MH cell
 - Majority (> 80%) of pulse current absorbed by capacitor bank
 - non-peak EMA current provide entirely by MH cell
 - Better load voltage balance between EMA and Winch pulses
 - non-peak current reaches is ~7A/cell, which is too high for this cell
- · Conclusions
 - Ultracapacitors can be paired with batteries with complimentary results
 - Impedance balance between battery & capacitor bank is crucial to results
 - Power density (W/L) of present ultracapacitor technology is not high enough for CRV in a straight parallel w/ batteries hybrid configuration

10/27/98

Modified CRV 270V Battery Requirements

- Performance
 - 270 +30/-65Vduring discharge, 345Vmax during charge
 - Divide into eight batteries modules each capable of 2.65 Ah (2.06 Ah for EMAs)
 - 81A (or 31C), 60 ms peaks every 2 seconds for 15 minutes
 - 6A (or 2.3C) average current baseline during the 15 minutes on EMAs
 - 3A (1.1C) average current baseline during the 10 minutes on chutes
 - 33A (or 12C), 10 second peak at the end of the 10 minutes for the flare
 - 36 five minute discharge cycles once a month
 - Bus voltage < 300V during 40 kW regenerative charging (40.5A for 60 ms)
 - Outside cabin, vacuum exposed for 3 years (14 days for V201)
 - 247 liters available in nose in an oblique trapezoid shape

10/27/98

NASA-Johnson Space Center, Houston, TX

20

High Power Cell Design Trades

Cell	Cell 1C	Batt Module	Max OCV	Final EMA	Final Winch	Estimated 8	stery Module
Size	Cap. (Ah)			Volt (V)	Volt (V)	Mass (kg)	Volume (L)
6	1.90	2P-1258	274	211	229	62.30	31.46
9/5C	1.00	3P-115S	252	215	204	43.47	19.92
SubC	2.00	3P-210S	286	213	241	46.75	20.52
0	4.00	1P-218S	301	209	243	45.78	23.75
subC	1.70	3P-200S	274	220	235	45.36	19.44
	D 9/5C subC	Size Cap. (Ah) 0 1.90 9/5C 1.00 subC 2.00 D 4.00	Size Cap. (Ah) configuration D 1.90 2P-1258 9/5C 1.00 3P-115S subC 2.00 3P-210S D 4.00 1P-218S	Size Cap. (Ah) configuration (V)	Size Cap. (Ah) configuration (V) Volt (V) D 1.90 2P-125S 274 211 9/5C 1.00 3P-115S 252 215 subC 2.00 3P-210S 286 213 D 4.00 1P-218S 301 209	Size Cap. (Ah) configuration (V) Volt (V) Volt (V) D 1.90 2P-125S 274 211 229 B/SC 1.00 3P-115S 252 215 204 subC 2.00 3P-210S 286 213 241 D 4.00 1P-218S 301 209 243	Size Cap. (Ah) configuration (V) Vol (V) Vol (V) Mass (kg) D 1.90 2P-125S 274 211 229 92.30 9/5C 1.00 3P-115S 252 215 204 43.47 subC 2.00 3P-210S 286 213 241 46.75 D 4.00 1P-218S 301 209 243 45.78

Assumptions used

- Effective internal resistance (Re) of cells based on delta V:delta I performance under test
- Re was measured at 10% increments during 1C discharges with 10C, 80 ms pulses
- Cell interconnect resistance of 0.5 mohms used for each cell
- Total cell mass (volume) x 1.5 (x2.0) = estimated battery module mass (volume)

Conclusions

- NiCd Cs cell yields module with lowest volume, Bolder lead acid close second.
- 8 Hawker lead acid D-cell battery modules exceeds available volume (247L)

10/27/98

Eric Darcy/281-483-9055

- Cells were charged per the manufacturer's recommendation
- Allowed to rest at OCV for > 1.5 hours
- Discharged at C-rate with 10C, 80 ms pulses every 5.987 minutes at 25 degC
- Data allows Re to be calculated at 10% SOC increments from 90 to 10%
- Re = deltaV/delta I

Bolder Technology Lead Acid Cell

Thin metal film cell contruction yields very high power

9/5C sized cell delivering 1.0 Ah

cell is 90g, 22.9 mm diameter x 70.1 mm tall

cell impedance < 2 mohm, similar to 1000F capacitor

Impedances are very similar

- Bolder 9/5C LA cell (1F)
- Maxwell capacitor (1000F)

Test Conditions and Results

- Charging followed Bolder's recommended "Current Regulated Taper Charge"
- Discharge at 25 deg C at 1/3 current levels of the new profile (27A peak)
- Minimum EMA voltage = 11.1V/6 cells (= 212V for 115S)
- Mininum Winch voltage = 10.7V/6 cells (= 204V for 115S)
- Maximum voltage sag = 0.9V/6 cells (= 17V for 115S) during winch pulse

- 1 Bolder 6S and 1 Hawker 6S strings were charged independently
- Immediately after, battery strings were paralleled and discharge began
- new power profile was run (81A peak)
- Total Hawker and total hybrid currents were measured throughout run Results
- Minimum EMA voltage = 10.4V (1.73 V/LA cell)
- Minimum Winch voltage = 9.65V (1.61 V/LA cell)

Test set-up at Symmetry Resources, Inc., in Arab, AL

- Bolder LA battery is in background
- Hawker LA D-cell battery is in foreground

Results

- Bolder current is 75% (61A) of total at first
- Bolder current levels to 66% (53A) after 8 minutes
- Bolder base currents starts at 4A tapers to 1A during EMA phase
- Bolder absorbs only 70% (23A) of Winch pulse at first
- Bolder current fades about 7A at end of 10s Winch pulse
- Bolder does too high a share of EMA base load, little left for winch
- A slightly higher ratio of Hawker to Bolder cells may work better

- 1 Bolder 6S and 1 Sanyo 11S strings of "A"cells were charged independently
- Immediately after, battery strings were paralleled and discharge began
- new power profile was run (81A peak)
- Total Sanyo and total hybrid currents were measured throughout run Results
- Minimum EMA voltage = 10.45V (0.95 V/NiMH cell)
- Minimum Winch voltage = 11.06V (1.01 V/NiMH cell)

Results

- Bolder current is 88% (71A) of total at first
- Bolder current peaks to 90% (73A) after 2 minutes
- Bolder current ends EMA phase at 86% (70A)
- Bolder base currents starts at 0A, peaks at 2A, and ends at 0A during EMA phase
- Bolder absorbs only 85% (28A) of Winch pulse at first
- Bolder current fades only 1A at end of 10s Winch pulse
- A-size NiMH cells are pushed hard during base loads (6A max)
- Using a NiMH more capable of 2C rates would boost EMA voltage

NASA-Johnson Space Center, Houston, TX

28

Observations and Point Design Comparisons

- Observations
 - Bolder only system requires 3 strings and has very little energy margin
 - Parallel 6 Bolder cells with 6 Hawker D-cells
 - · 130 cells of each in series
 - 48.8 kg, 23.9 L vs Bolder only system 43.5 kg, 19.9 L
 - · A slightly higher ratio of Bolder: Hawker cells may improve peak sharing
 - Parallel 6 Bolder cells with 11 Sanyo NiMH A-cells
 - · higher capacity NiMH cell improves winch pulse voltage
 - Cell string ratio = 125 Bolder: 225 Sanyo
 - Hybrid module is 23.1 kg, 12.1 L
 - 47% mass reduction, 39% volume reduction
 - Using a NiMH cell more capable of 2C rates will boost EMA voltages

10/27/98

Issues with lead acid and conclusions

- · Regenerative braking result in voltages above 300V with lead acid
 - Hawker D reached 2.356V when charged at 10A for 60 ms at 98% SOC
 - Bolder 9/5C reached 2.924V when charged at 36.5A for 60ms at 98% SOC
 - Bolder 9/5C reached 2.925V when charged at 36.5A for 60ms at 90% SOC
- 300V maximum is required to prevent corona discharge hazard
 - Energizer subC NiCd reached 1.451V, charged at 20A for 60ms at 98% SOC
- Conclusions for X-38
 - Ultracapacitors are too voluminous when paralleled w/ batts w/o regulation
 - Bolder cell has higher useful power density (W/L) than Ultracaps over entire mission profile
 - 300V Max voltage reqt rules out any lead-acid system
 - NiCd subC only system is baselined

10/27/98

Volume comparison

- Bolder 6-cell battery
- 7S Ultracapacitor Bank